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Standard models of diffusion assume spatial and temporal homoge-
neity. This article develops a class of diffusion models that incorpo-
rate spatial and temporal heterogeneity by turning to the individual
level within an event-history framework. These models permit the
analyst to represent social structural relations thought to channel
diffusion, and to model decay in the influence of events over time.
Heterogeneous diffusion models are applied to a reanalysis of data
reported in Coleman, Katz, and Menzel’s classic diffusion study.
Network centrality and local structures of influence based on cohe-
sive relations and structural equivalence are all shown to channel
the diffusion of tetracycline.

A variety of phenomena of interest to social scientists involve the diffu-
sion of some trait or characteristic through a population. Examples in-
clude spread of a disease, adoption of an innovation, and acquisition of
a skill (for a general review, see Rogers [1983]). Social scientists often
think of such processes as driven not only by the atomistic behavior of
adopters, but as involving processes like contagion—contact between
members of the population who have and have not yet adopted. Such
contact involves some form of meaningful communication and influence,
grounded in social relations ranging from face-to-face interaction to
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highly constructed forms of perceived similarity (Burt 1987; Strang and
Meyer 1993).

To learn about social interaction and social structure, however, we
need to move beyond standard diffusion models, which assume spatial
and temporal homogeneity. Spatial homogeneity means that all members
of the population have the same chance of affecting and being affected
by each other. Temporal homogeneity means that the potential influence
of prior adoption events does not vary with the length of time since
their occurrence. These assumptions make the mathematics of diffusion
relatively tractable. But they also render diffusion analyses uninformed
by, and uninformative about, the social structure of the population under
study.

A number of diffusion models relaxing the assumptions of spatial and
temporal homogeneity have been proposed (e.g., see the review in Bar-
tholomew [1982]).2 Hernes (1972) and Diekmann (1989) consider varia-
tions on classic diffusion processes that provide plausible representations
of population marriage rates. But population-level diffusion models are
difficult to extend in more concrete ways. Faced with specific social struc-
tures, analysts generally replace stochastic with deterministic formula-
tions and simulate diffusion in simplified contexts rather than model
complex empirical processes.

In this article we develop individual-level models of diffusion that
allow heterogeneity both within the population and over time. (We use
the term “individual” to stand for the adopter, which may be a person,
organization, or other social actor.) Such models can be estimated from
event-history data—data on the times of adoptions by individual mem-
bers of the population.® We propose models in which adoption by an
individual is a function of prior adoption events by other members of the
population. In contrast to standard diffusion models, the population-level
process of spread is not explicitly modeled. Instead, we formulate explicit
models of the individual-level dynamics, which reduce to the standard
population-level model when spatial and temporal homogeneity holds.
By means of Monte Carlo simulations, one could use these models to
forecast population-level dynamics, assuming the distribution of exoge-
nous explanatory variables is known.

The shift to the microlevel opens up an exciting array of possible exten-
sions to standard diffusion formulations. Building on Marsden and Po-
dolny’s (1990) and Strang’s (1991a) application of standard event-history

? See also Granovetter (1978), who reframes diffusion around the notion that individu-
als respond to the number of prior adopters rather than to contact with prior adopters.

3 More generally, one could have data on times of adoptions and the onset of conta-
gion, which need not be the same events.
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methods to the study of diffusion, we suggest classes of models that
capture both spatial and temporal heterogeneity. We present results of
qute Carlo simulation studies of the properties of maximum-likelihood
estimators of some of these new models. Finally, we illustrate our ap-
proach with an application of these new models to Coleman, Katz arlx)d
Menzel’s (1966) classic study, Medical Innovation.* ’ ’

MODELS OF DIFFUSION
Population-Level Models

We begn? with models of diffusion at the population level. For a popula-
tion of size I, we may describe the time path of adoption in terms of
N(¢t), the number who have not yet adopted at time ¢, or equivalently
by S(¢) = I — N(¢), the number who have adopted by time ¢ and art:,
now spreading it to those still at risk of adoption. Later we also make
use of two related concepts, N(t) and F(t), the set of cases at time ¢ that
hfwe l:lOt adopted and those that are spreading, respectively. In standard
dlffu51.on models, these two sets provide an exhaustive and mutually
exclusive partition of the population. One can also imagine extensions of
standard diffusion models in which these two sets may be defined i
alternative ways, as we discuss further below. "

The standard population-level formulation of a diffusion process is
(see, e.g., Bailey 1976; Bartholomew 1982):

hmmwwa+A»=n—uMn=ﬂ=

Atlo At
. prob[S(t + At) =5 + 1|S(@t) = 5] : M
Al:rlno A = [a + bs(t)]n(?).

To exglicate the logic underlying equation (1), we decompose its right-
’hanfi side into'diffusion influences originating outside and inside the pop-
Lllatlon. The impact of factors outside the population (often called an

externa! source”) is proportional to the number of individuals at risk
of a.doptlon, n(t); the effect of this influence is a. The impact of contacts
or linkages within the population is proportional to the number of spread-
ers sgt) multiplied by the number of individuals at risk #n(t); the ef?ect of
this impact is b. Thus, the contribution to the diffusion ,process from

outside the population is a n(¢), and th ibuti
the , e contribut insi
B alation i ot ion from inside the

* Burt (1987) reanal
yzes the Coleman et al. study; M
lyze Burt. We reanalyze both reanalyses. ¥i Marsden and Podolny (1990) reana-

s . .
Of course, in modeling the spread of certain diseases, such as smallpox, it is appro-
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This model embodies some unrealistic assumptions. It implies that all
members of the population are equally susceptible to the external factors.
It implies that contacts between all pairs consisting of a spreader and a
potential adopter are equally likely and equally contagious. And it implies
that the rate and contagiousness of contacts do not vary with time.

Population-level models also involve a less obvious but important limi-
tation. There is no straightforward way to introduce differences across
individuals in their intrinsic tendency to adopt in models like equation
(1), precisely because they are framed at the level of the population.
This divorces diffusion analysis from the larger regression tradition that
focuses on internal determinants of behavior. The study of diffusion be-
comes an alternative or supplement to standard individual-level analysis.

Though one can build population-level heterogeneity and temporal
inhomogeneity (e.g., time trends) into population-level models like (1),
such extensions are difficult. In fact, an analytical solution for even the
general homogeneous mixing formulation in (1) is not available (see Bar-
tholomew 1982, pp. 255-59). We believe that progress can be made by
shifting to the level of the individual population member. This strategy
simplifies the mathematics, turning a nonlinear differential equation into
a more manageable model about the dynamics of individual behavior.

One individual-level analytic approach is to model the time of adoption
using a linear regression framework with spatial effects (Doreian 1981).
However, such models are designed to handle mutual instantaneous
relations between cases where outcomes are measured at a single point
in time. They are not suited to temporal processes because use of the
timing of other adoptions as regressors permits later events to influence

earlier ones (for an example, see Burt’s [1987] construction of “adoption
norms”). In addition, a linear regression framework does not deal natu-
rally with the right censoring generally present in longitudinal data on
change in discrete outcomes. This is made particularly problematic by
the frequent presence of important time-varying explanatory factors,
which also cannot be straightforwardly accommodated within cross-
sectional linear regression models.

1t is more natural to develop individual-level models of diffusion within
an event-history framework (Tuma and Hannan 1984). At the micro-
level, let ¥;(t) be a binary variable which equals one if individual i has
adopted by time ¢ and zero otherwise. It is useful to model the hazard
rate of adoption,

ri(t) = lim prob(¥i(t + A0 = L¥io = 0]’

(2)
At loO At

priate to assume that there is only contagion and no external source (or intrinsic
tendency to adopt). Models for processes of this type would suppress a.
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where 7;(t) gives the limiting probability that an individual case i adopts

the diffusing trait between ¢ and ¢ + At per unit of time, given that i

did not adopt before ¢.

To translate the population-level diffusion equation into an analogous
equation at the microlevel, we can unpack (1) into two components: the
number of individuals at risk of adoption and the hazard rate of adoption
for each individual. By definition the number of individuals at risk is

n(t). The individual hazard rate of adoption corresponding to equation
(1) is

M =a+bs®=a+ » b nENQ. 3)
SEL()

The hazard rate is subscripted by n to emphasize that it applies to those
individuals who have not yet adopted, that is, those in the set N(¢). (For
simplicity, we suppress the explicit reminder that the rate applies only
to members of N(¢) below.) Thus, equation (1) implies that there are n(t)
hazard rates like equation (3).

We write the set of influencing events very generally as membership
in $(t) to emphasize that defining the set of possible influences is a theo-
retical task. A homogeneous mixing model assumes that every adoption
prior to ¢ is potentially influential. But theories of social structure suggest
more interesting ways to think about patterns of influence. These include
ideas about communication rates, reference groups, relational or struc-
tural equivalence, and isomorphic cultural identities. In addition, study
designs may suggest obvious restrictions on the linkages thought to un-
derlie ¥ (¢). In Medical Innovation (Coleman et al. 1966), for example,
doctors are assumed to respond to other doctors working in the same
city, but not to ones in other cities.

The identification of ¥(t) involves assumptions about temporal effects
as well as spatial relations. In many contexts, researchers may require
simple temporal ordering as a prerequisite of influence: $(¢) contains all
spatially relevant individuals adopting before ¢. But in other contexts,
researchers may wish to permit instantaneous influences. Here ¥(¢) also
contains spatially relevant individuals having events at ¢. Situations in
which the latter would be appropriate include settings where adoptions
are jointly planned and explicitly coordinated. Instantaneous influence
might also be allowed where measurement techniques produce artifactu-
ally equivalent adoption times, though here no simple assumption about
influence is without defects.

When explanatory variables are introduced in models of hazard rates,
it is conventional to exponentiate the right-hand side of the model (or,
equivalently, to model the logarithm of the rate) to ensure that hazard
rates are nonnegative. This suggests two plausible variations on equation
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(3). A multiplicative diffusion model treats individual tendencies and
contagious influences as multiplying each other:

r,(t) = exp (a + Z b). (4a)

SELM

An additive diffusion model sums separately multiplicative functions of
individual tendencies and contagious influences to form the overall haz-
ard rate:

r,(t) = expla) + Z exp(b). (4b)

SEL(

We consider the advantages of equations (4a) and (4b) below after infiicat-
ing more specifically how spatial and temporal heterogeneity can be intro-
duced.

Incorporating Heterogeneity

Rewriting the population-level model of diffusion at the'individual level
suggests that the parameter a can be treated as a function of measured
characteristics of i, x;. The tradition of regarding a as the effect of an
external signal can be usefully extended: individuals may be differe_nti.all.y
affected by common environmental influences. But we suspect that it is
often more useful to regard the elements of a as measuring an individual’s
“intrinsic” rate of adoption, which is distinct from the intrapopulation
diffusion process. Below we employ the second interpretation, which is
consistent with standard usage in event-history models.

In recent work, Marsden and Podolny (1990) and Strang (1991a) have
modeled heterogeneity in diffusion using standard event-history formula-
tions and estimation methods. For spatial heterogeneity this can easily. be
accomplished via the multiplicative model in (4a), although t.he resulting
equation does not reduce to the classical diffusion mode} 1p (1).when
there is spatial homogeneity. Both articles focus on variations in the
social proximity of # and s. They develop models of the form

7, (t) = exp(a’xn + z 8'zm> , (S)
SEL()

where z,, represents a vector of social proximity measures defined on n
and 5.6 Marsden and Podolny consider weighting schemes based on neF—
work relations (direct contacts vs. structural equivalence) in a reanalysis

6 Here and below we assume that all covariates are potentially time varying.
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of Coleman et al.’s (1966) classic Medical Innovation. Strang (1990,
1991b) considers the diffusion of decolonization within different partitions
(empires vs. regions) of the population of colonial dependencies.’

Models like (5) may be further elaborated in conventional fashion to
include parametric or nonparametric dependence on various measures of
time. For example, Marsden and Podolny (1990) assume that the impact
of individual propensities and intrapopulation influences is multiplied by
an unknown function of calendar time, ¢(¢), and estimate this model using
Cox’s (1972, 1975) method of partial likelihood. Similarly, Strang’s work
on decolonization assumes parameterized dependence on historical time.

Adding temporal heterogeneity in diffusion to standard event-history
models is not so straightforward. Strang (1991a) suggests that one may
develop models involving dependence on time since the most recent event
(¢,) in the population:

7,(t) = exp(a'x,) + exp(B'v, + ¥t,). 6)

But this approach (known as a Makeham model in the literature) is very
restrictive. It ignores the impact of events prior to the most recent one,
and does not marry well with the study of spatial heterogeneity.® A gen-
eral conclusion is that it is especially difficult to permit both spatial and
temporal heterogeneity in diffusion within the framework of conventional
hazard rate models.

It seems useful, then, to develop more general models of the way prior
events influence the rate of adoption. Such models may include four
kinds of terms: the susceptibility of some potential adopter » to diffusion,
the infectiousness of some spreader s, the proximity of pairs consisting
of one spreader s and one potential adopter 7, and temporal variation as
a function of time since adoption by spreaders.

We define x,, as a vector of variables describing #’s intrinsic rate of
adoption (i.e., ignoring intrapopulation linkages); v, as a vector of vari-
ables describing #’s susceptibility to intrapopulation linkages; w, as a
vector of variables describing the infectiousness of s; z,, as a vector of
variables describing the social proximity of # and s;° and ¢, as the time

? Other empirical analyses of contagion within an event-history framework include
studies of Progressive Era municipal and civil service reform by Knoke (1982) and by
Tolbert and Zucker (1983).

® The ¢, may be replaced by ¢,,: time since the last event by a population member to
which n is connected. This approach is feasible only if social proximity can be mea-
sured as a binary relation. And since ¢,, is undefined until the first adoption event by
a connected member of the population, this approach may work well only when the
population can be partitioned into a few large groups.

? Social proximity may be regarded as an inverse of social distance. Sometimes it may
be easier to theorize about or to measure social distance rather than social proximity.
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that s starts spreading, which is usually (but need not be) assumed to
equal the time s adopts. We assume that the first elements in x and v
are unity: these permit distinct intercepts for intrinsic propensities to
adopt and for diffusive influences from members of F(¢). Note that the
latter term can be regarded as representing a combination of average
susceptibility, infectiousness, and social proximity: we locate this effect
in v by convention. Only one intercept is identified for the three vectors
v, w, and z.

If we assume no time dependence and no temporal heterogeneity in
diffusion, a formulation of equation (3) within an additive framework is

r,(t) = exp(a’x,,) + z exp(B'v, + ¥'w, +8'z,)

SELW® (72)

exp(a’x,) + exp(B'v,) z exp(y'w, + 98'z,,),
SEL()
where a, B, v, and & are vectors of parameters giving the effects of
variables in the vectors x,,, v,, w,, and z,, respectively.
Similarly, in the absence of temporal heterogeneity in diffusion, a for-
mulation of equation (3) within a multiplicative framework is

7,(t) exp(a’x,, + z B'v, +y'w, + 8'z,,,)

SEL()

exp(a’x,, + z B'v, + z v w, + Z 8'z,,,).

SEL®) SEL®) SEL®)

(7b)

When spatial but not temporal heterogeneity is assumed, the trade-off
between the additive and multiplicative formulations seems to be primar-
ily a matter of their substantive appropriateness. The additive formula-
tion is more faithful to the standard population-level model in equation
(1) in that parameters like a and B can be translated into a and b (e.g.,
a = In a), whereas parameters from the multiplicative formulation can-
not. But this does not imply empirical superiority.

However, an additive formulation better accommodates the introduc-
tion of temporal heterogeneity. For example, consider a simple model in
which the impact of each prior event falls off exponentially with the
length of time since its occurrence. (There is in fact some empirical evi-
dence that exponential decline in salience is often a useful model; see
Zielske and Henry [1980].) It is straightforward to allow exponential
decline in the additive model:

r,(t) = exp(a’x,) + exp(B'v,) z exply’'w, + 8'z,, + Lt —t)], (8
SELW)
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where ¢, is the adoption time of the sth member of ¥(¢). Other forms of
variation with the time since previous events can also easily be incorpo-
rated into the additive formulation. For example, one can replace (¢ —
t,) with some other function g(¢, ¢,) in equation (8). A further extension
would let { be a function of covariates describing #, s, and their linkages.

A multiplicative framework has difficulty in accommodating the as-
sumption that the impact of each event falls off since its occurrence. If
we multiply (7b) by exp[{ Z,c 4 (t — t,)] in a manner analogous to equa-
tion (8), problems arise because 2 ey (¢t — ¢,) increases with both the
number of prior events and with their remoteness in time—yet we expect
the hazard rate to rise with the number of prior events but to decline
with their remoteness in time. For example, as any event grows distant
in time, Z,cg,(t — t;) becomes very large. It seems difficult to adjust
for this flaw working from the multiplicative formulation in (7b).

ESTIMATION

The models presented above can be estimated by the method of maxi-
mum likelihood. Usually one maximizes the logarithm of the likelihood,
rather than the likelihood, which for right-censored data on adoption
dates (Tuma and Hannan, 1984, p. 126) is

N
log ¥ = Z d, logr,(t) + log'G,(t|t,), 9)
n=1

where d, is an indicator variable equaling one if the case adopts and
G,(t|t,) gives the probability that » has not adopted by time ¢ for a
process starting at time ¢,.

In general, maximum-likelihood estimators have good properties in
large samples. They are asymptotically normal, unbiased, and consistent.
Tuma and Hannan (1984, chap. 5) demonstrate that these large sample
properties translate well in event-history analyses with independent ran-
dom samples in the sizes usually available to sociologists (i.e., at least a
few hundred cases). However, the heterogeneous diffusion framework
described above involves interdependence in outcomes of a type not pre-
viously investigated, to our knowledge. Moreover, diffusion studies in-
volving contagion are typically based on fairly small populations rather
than on large samples.!® They thus pose fresh questions of estimator bias
and efficiency. For this reason, we performed a Monte Carlo study to

' In general, within a diffusion context we sample populations from a universe of
populations.
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examine the properties of maximum-likelihood estimation of event his-
tory models allowing diffusive influences.

We simulated event times according to some simple versions of equa-
tion (7a).!! For each set of parameter values, we generated 100 data sets,
each consisting of 100 cases. Details of the simulation procedure are
available from the authors. We avoided parameter combinations that
caused nearly all events to occur within a very short interval and there-
fore caused estimates to have high variance. Simulated data sets were
analyzed using a version of RATE (Tuma 1980) that was modified to
permit estimation of models like equations (7a) and (8)."?

Table 1 describes the performance of maximum-likelihood estimators
for two simulation studies. The first study examines a model including
two intercepts, one for an intrinsic tendency to adopt and the second for
contagion due to all prior adoptions. This model corresponds to the stan-
dard population-level diffusion model in (3). In addition to the true values
used to construct the simulated data, the table reports the mean, the
standard deviation, and the mean estimated standard error of each pa-
rameter estimate.

The results indicate that individual-level maximum-likelihood estima-
tion can capture the properties of simple diffusion processes. The esti-
mates have averages close to their true values and exhibit little variance.
At least in this simple case, samples of quite modest size permit the
detection of intrapopulation contagion. (When the sample size is de-
creased from 100 to 50, SEs roughly double for both parameter sets
reported here.)

In a second study, we add four covariates. These represent the four
kinds of effects suggested in equation (8): variations in the intrinsic ten-
dency to adopt, in susceptibility to influence, in infectiousness, and in
social proximity. Values for these covariates were pseudorandomly and
independently drawn from a standard Gaussian distribution.

Before discussing the results of this study, we describe how social
proximity variables can be handled in our modified version of RATE.
Three possible data structures are permitted: a full case-by-case matrix
of social proximities, a weighted list for each case of the other cases that
can influence it, and a class of distance metrics relating characteristics

" We also explored the estimation of simple forms of temporal heterogeneity as postu-
lated in eq. (8). Results for these models are very similar to those reported here for
models focusing on spatial heterogeneity and are omitted to conserve space.

' Models like eq. (7b) can be estimated with standard event-history software, al-
though the construction of a variable like =, ¢ 4,2, is tiresome.
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TABLE 1

MoNTE CARLO STUDIES OF ESTIMATORS FOR HETEROGENEOUS DIFFUSION MODELS

ML ESTIMATE

True Value Mean SD Mean SE
Study 1:
Intrinsic tendencies:
Intercept ..........ccoevviininiininnnn., —6.00 —-5.98 .43 .45
Contagion:
Intercept ..........cooeeviiuniiniinnn.. —8.00 —8.01 .16 .16
Study 2: .
Intrinsic tendencies:
Intercept ..........ccoooiiiiiiiiinnn... —6.00 —6.03 .66 .69
Variable propensity .................. 5.00 5.06 .49 .49
Contagion:
Intercept ...........ooeiviiniiinnnn.n. —8.00 —-8.16 .67 .63
Susceptibility of 7 .................... 2.00 2.00 13 .14
Contagiousness of s .................. -2.00 -2.09 .44 .40
Proximity of n and s ................. 4.00 4.10 .39 41

NoTE.—SD = Standard deviation of the ML estimates; mean SE = mean of the estimated standard
error of the ML estimate.

of each pair of cases.! The full case-by-case proximity matrix includes
the list as a special case. We expect, however, that the list structure will
often be useful, both because network data are often collected in this
fashion and because large networks are often sparse. The full proximity
matrix is primarily useful for populations of a modest size (say on the
order of N = 100), due to O(n?) data storage and manipulation require-
ments. In our Monte Carlo studies and empirical examples below, we
make use of both the case-by-case matrix of proximities and the list of
direct relations. In the Monte Carlo study, social proximity is constructed
by pseudorandom assignment to each case of 1-3 other population mem-
bers to which the case is close.

In the second study all parameter estimates again appear to be unbi-
ased: all mean estimates are close to their true values. The variances of

' The class of distance metrics is that of absolute power functions:

K lq
f(pr q) = Dm = (z'xnk - x:k") ’
k=1

where D, is the distance between 7 and s with respect to K variables. When p = ¢
= 2, the metric is Euclidean distance. By convention, p = 0 and ¢ = 0 implies that
the measure equals zero if values on all K variables for the dyad are identical, and
one otherwise. We can take the inverse of these measures to work in terms of proximi-
ties, or use the distance directly.
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the estimated parameters remain low, suggesting the capacity to distin-
guish features of the diffusion process such as susceptibility and infec-
tiousness. It also seems straightforward to estimate parameters describing
network relations within a population.'* We conclude that diffusion mod-
els can be effectively estimated using an event-history framework, for at
least some ranges of true parameter values. 'S

MEDICAL INNOVATION AS HETEROGENEOUS DIFFUSION

We illustrate the models above through an examination of the adoption
process reported by Coleman et al. (1966) in Medical Innovation. Their
sociometric analysis of the decision to employ tetracycline (named gam-
manym in the report) as a prescription drug by physicians in four cities
is a classic in the sociological study of diffusion. In particular, Medical
Innovation highlighted relational elements in the adoption process by
noting differences between socially integrated and socially isolated physi-
cians. To Coleman et al., the S-shaped curve of cumulative adoptions
among centrally located doctors suggested a process of social contagion
in which these doctors learned from the prior adoptions of others. In
contrast, the constant rate of adoption among socially isolated doctors
signaled dependence on sources of information outside the local medical
community.

Figure 1 shows estimates of the integrated hazard (Nelson 1972; Aalen
1978) of tetracycline adoption in each of the four cities. Although Medical
Innovation is commonly regarded as the classic diffusion study in sociol-
ogy, it is noteworthy that figure 1 only faintly suggests the monotonically
increasing hazard rate over time that is characteristic of globally conta-
gious processes. Peoria does show evidence of a simple contagion process,
but the other three cities do not. However, the graph is not inconsistent
with diffusion operating more locally or for some kinds of physicians and
not others.

Coleman et al.’s data have been the subject of considerable recent
reanalysis. Burt (1987) examined the local network structure of adoption,

* We also examined the case where network density is substantially higher by relating
each case to up to 10 (rather than three) neighbors. Estimate quality is not affected
by this shift.

5 In this article we simply provide evidence for the viability of estimation given a
properly specified diffusion process. In ongoing work, Greve, Strang, and Tuma
(1993) examine estimation properties in much greater detail. One issue has to do with
the robustness of diffusion effects across parameter space. A second issue has to do
with the viability of estimating diffusion effects from a sample and from populations
with some missing data. Prior work on diffusion, to our knowledge, has always
assumed full information on the population of spreaders and the population at risk.
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contrasting “cohesion” and “structural equivalence” as bases of diffu-
sion. Cohesion refers to the direct influence of a physician’s advisors
and discussion partners. Structural equivalence refers to the influence of
physicians who have similar patterns of ties to others within the medical
community, whether or not they are directly linked to one another.'® In
a series of correlational and regression analyses, Burt found that the
timing of a physician’s adoption of tetracycline is better predicted by the
adoption date of structurally equivalent physicians than by the adoption
date of advisors and discussion partners. He concluded that “there is
strong evidence of contagion through structural equivalence and virtually
no evidence of contagion through cohesion” (Burt 1987, p. 1327)."

Marsden and Podolny (1990) examined the case for Burt’s (1987) argu-
ment using event-history methods, very much in the spirit of this article.
In particular, they utilized a multiplicative diffusion model like equation
(7b), estimated by partial likelihood. The proportion of structurally
equivalent alters (and separately, of cohesive alters) who had adopted by
the prior month was introduced as a time-varying covariate multiplying
the effects of individual characteristics. Marsden and Podolny found that
neither the proportion of structurally equivalent alters nor the proportion
of cohesive alters significantly increased the hazard rate of adoption.

We address the “structural equivalence versus cohesion” debate yet
again, using both additive and multiplicative formulations of -heterogene-
ity in diffusion processes. We then examine some models patterned after
Coleman et al.’s major finding, which was not about local network struc-
ture at all, but about network centrality.®

Data and Variables

We briefly describe the Medical Innovation study. Of particular rele-
vance are limitations that point to broader data collection and research
design issues for diffusion analysis.

!¢ Borgatti and Everett (1992) argue that since structural equivalence measures the
openness of dyads to the same mixture of signals from combinations of other actors,
its effects may be best understood as capturing a complex combination of direct
interpersonal influences. In contrast, Burt suggests that structurally equivalent actors
imitate each other because they stand in an implicitly competitive relation (1987,
pp. 1291-94).

" As noted above, we think that linear regression analyses are inappropriate to the
study of diffusion and, indeed, of any adoption process occurring over time.

'8 Burt (1987) uses the term prominence instead of centrality; Marsden and Podolny
(1990) use the term integration. The actual measure is the number of times the physi-
cian was named as an advisor or discussion partner by another physician in the
community. Both analyses find a zero-order effect of centrality that disappears once
intrinsic propensities to adopt local network effects are incorporated in the model.
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The event of interest is a physician’s first prescription of tetracycline.
Coleman et al. gathered a “behavioral trace” of tetracycline adoption
by auditing the prescription records of 125 physicians.'® These physicians
w.ere‘virtually all “generalists” (general practitioners, internists, and pe-
d-latrlcians) practicing medicine in the four cities under study. Prescrip-
tions written by each physician were audited for a three-day period each
month; the first month this audit uncovered a tetracycline prescription
was taken as the adopting month. Of the 125 physicians, 109 prescribed
tetracycline during the 17-month observation period.

Co.leman et al. (1966) collected survey data on various physician char-
acteristics that might affect adoption. In analyses below, we include sev-
eral factors found to predict adoption in prior research as control vari-
ab.les: whether the physician had a scientific (vs. a patient-centered)
orientation to medicine, the physician’s “professional age” (equaling one
for medical school graduation before 1930 and zero otherwise), and a
score for medical journal subscriptions.”® We ignore other individual
characteristics to limit the loss of cases due to survey nonresponse. Ex-
ploratory analyses not reported here indicated that the inclusion of the
other variables analyzed by Burt (1987) and by Marsden and Podolny
(1990) did not affect the pattern of contagion reported below.

Finally, Coleman et al. collected sociometric data on relations within
the medical community in each city. Physicians were asked to cite up to
three physician “friends,” “advisors,” and “discussion ‘partners.” (Note
the potential for missing data on intrapopulation influences, since those
with four or more partner relations were allowed to mention only three.)
Following Burt and Marsden and Podolny, we limit our analysis to the
advising and discussion relations.

This procedure generated citations to physicians specializing in various
branches of medicine, and thus outside the “prescription sample” of
medical generalists. Coleman et al. (1966) collected data on 91 of these
specialists to map the social structure of each medical community, but
did not collect data on the specialists’ prescription patterns. Thus, Cole-
man et al.’s data do not completely cover the entire population conceiv-
ably relevant to a diffusion study, and their “prescription sample” is not
a random sample of that larger population.

. We follow Burt (1987, pp. 1330-31) and Marsden and Podolny (1990)
in the treatment of cohesive relations (prior adoption by advisors and

19
Colem.an et al. (1966) sought to collect data on 130 physicians, but no prescriptions
;f any kind could be recovered for five, who are omitted from the analyses below.
Sever:al. scales were constructed by Burt (1987) to maximize the effect of individual
propensities, thus permitting a strong test of contagion effects. The three scales that
we use are the ones that Burt found to show the strongest relation to adoption.
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discussion partners) and in our general approach to structural equiva-
lence. But while Burt used his informed judgment as a network analyst
to assign physicians to structurally equivalent blocs, we use standardized
proximity scores between each pair of doctors in the same city (Burt's
w;;, p. 1329). We differ more substantially by allowing only generalists
to enter into ¥(¢), although global network measures are formed using
all available data on the network structure of each medical community
(see below for discussion).

The design of the Medical Innovation study suggests two major con-
cerns for a diffusion analysis. First, discrete and episodic measurement
of the timing of adoption (three-day prescription audits converted into
monthly adoption dates) presents problems. Adoption month of physi-
cians prescribing tetracycline irregularly will be upwardly biased as the
three-day audits may miss their first month of prescribing tetracycline.
More important, measuring adoption only to the nearest month produces
many artificial ties in adoption dates. When an advisor and advisee pair
are recorded as adopting in the same month, should the advisor be as-
sumed to have affected the advisee, or not? Or should we develop tech-
niques that average over all possible temporal sequences?

Coleman et al. (1966) and Burt (1987) assumed that adoption in the
same month is the strongest possible evidence of mutual influence. In
contrast, Marsden and Podolny (1990) assumed that those who adopted
in the same month exerted no influence on each other. To maximize the
comparability of our results with prior research by Coleman et al. and
Burt, we report analyses that permit mutual contemporaneous influence
(here, within the same month).2! We note how results differ when, like
Marsden and Podolny, we assume that only adoptions in prior months
are potentially influential. We emphasize that future work on diffusion
might further consider how to handle artifactual ties in adoption times.

The second problem with the Coleman et al. data is that the prescrip-
tion sample may be seriously incomplete. Prescription audits were per-
formed for nearly all medical generalists in the four cities, but not for any
medical specialists. This becomes a concern if the specialists’ adoption of
tetracycline affects the generalists’ propensity to adopt. Moreover, it
raises the question of whether the reverse happened—adoption by gener-
alists may have affected adoption by specialists, who may, in turn, have

affected other generalists and other specialists.

Both Burt and Marsden and Podolny assumed that the use of tetracy-
cline by specialists affected generalists and consequently imputed adop-
tion dates for specialists (though they analyzed only the generalists’ adop-

2! An “influencing” event occurring in the same month as an “influenced” event is
treated as having occurred midway through the month.
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tions). On the other hand, presumably Coleman et al. did not sample
the prescriptions of specialists because they believed the adoptions of
specialists and generalists were unconnected. We follow their reasoning
and assume that medical generalists attended only to other medical gener-
alists, and not to specialists with whom they were directly linked or
structurally equivalent. Prescription data on specialists as well as general-
ists are needed to test hypotheses about who really influenced whom.

Again, the central point is that research investigating diffusion must
carefully consider how to bound the population under study. The diffu-
sion methods discussed here and in previous research assume complete
data on the population at risk of adopting. This requirement is due to
the fact that adoptions enter not only as the dependent variable but as
explanatory covariates as well. In further work Greve, Strang, and Tuma
(1993) assess the degree to which various forms of missing data adversely
affect the estimation of individual-level diffusion models.

Baseline Diffusion Models

We begin by examining the form of diffusion effects: whether there is
evidence for contagion within the four medical communities, and
whether the impact of others’ adoptions appears to vary over time. Table
2 presents some baseline models considering these influences in addition
to those of individual propensities related to the physician’s orientation
to medicine, professional age, and attention to professional journals. We
employ the additive diffusion formulation in equation (8) since a main
goal here is to consider the place of temporal heterogeneity in the diffu-
sion of tetracycline.

Model 1 in table 2 reports a homogeneous mixing model of diffusion.
The addition of a diffusion effect for all prior or contemporaneous adop-
tions in the city produces a significant increase in the likelihood-ratio chi
square. Each adoption within the city adds .0031 [= exp(—5.78)] to the
hazard.?? This suggests a modest contagion effect, in line with the slowly
accelerating hazard rate indicated in figure 1. For example, after 10
physicians have adopted tetracycline in a community, the estimated rate
is 1.4 times larger than the base rate (when no adoptions have occurred).
In the largest city studied, Peoria, the estimated rate at the end of the
study (after 5SS adoptions) is nearly 3.3 times larger than the base rate.

Model 2 permits the influence of prior events to vary as an exponential

2 1n a Cox model, this term would be an element in the unobserved common temporal
variation that is treated as a nuisance parameter. We think it informative for present
purposes to measure the effect of homogeneous contagion explicitly, although more
refined analyses might locate some of this effect in time-varying environmental factors.
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TABLE 2

BASELINE DIFFUSION MODELS: ML ESTIMATES OF ADDITIVE DIFFUSION MODELS OF
TETRACYCLINE ADOPTION FOR 121 PHYSICIANS (SEs in Parentheses)

MoDEL

Intrinsic tendencies:
—2.60%%%  —2.99%*%  —3.33x%x  —q.39%xx

Intercept .....cvvvvenrrnveernienenns
(.19) (.39) (.40) (.79)
Scientific orientation ............... Y A L55**
(.13) (.24)
Professional age .................... — . 75%**  —1.05*
(.25) (.54)
Journal subscriptions .............. R S J73%*
(.17) (.32)
Contagion:
Intercept .....covvvvinireinieiiininnns — 5. 78%%*  —4 27%* —5.98%*x
(.28) (.47) (.73)
Time decay ......ocoovviiieineennn. —.44* -.02
(.23) (.10)
Likelihood ratio x? versus constant
hazard model ...............coeee 6.5%* 14, 5%** 27.4%%* 37.5%%*
Af oo 1 2 3 3

* Significant at the .10 level.
** Significant at the .05 level.
*** Significant at the .01 level.

function of time since their occurrence. The coefficient for this term is
negative and significant, suggesting that physicians who have recently
begun to prescribe tetracycline are more “infectious” than those who
have been prescribing for some time. One might imagine physicians are
more likely to communicate about their use of a drug they have recently
begun to use.?

Model 3 examines factors affecting the physician’s propensity to adopt.
It adds the three physician characteristics discussed above that have been
found by prior work to be strong predictors of tetracycline adoption.
These variables show the expected relationships: scientific orientation
and journal subscriptions raise the speed of adoption, while professiqnal
age lowers the rate of adoption. Separately and together, these ﬁpdmg’s’
suggest that tetracycline was adopted earlier by more “modern-minded
physicians connected to technical advances in medicine.

23 The alternative outcome is not inconceivable: physicians might not advocgte a
prescription drug (or colleagues might not attend) until it has stood the test of time.
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Model 4 examines the role of intrinsic propensities and contagion si-
multaneously. The three physician characteristics remain strong pre-
dictors of adoption: in fact, the coefficients of these characteristics in-
crease in magnitude once contagion effects are included in the model.
There is evidence that prior events influence adoption, net of individual
propensities. But the effect of temporal change in contagiousness disap-
pears once individual propensities to adopt are controlled. Apparently
the finding suggested in model 2 is due to aggregating the responses to
contagion of physicians having different intrinsic propensities to adopt.
As a first main result, we conclude that there is evidence of contagion
that is temporally homogeneous.

Local Network Structure

We now turn to a core substantive issue: To what extent does influence
flow between directly related (cohesive) physicians and to what extent
does it flow between structurally equivalent physicians? Since table 2
indicates no temporal decay in influence once individual propensities are
added to the model, we ignore such effects. This lets us compare results
across the two modeling frameworks developed above. Table 3 reports
results for multiplicative models of diffusion while table 4 reports results
for additive models of diffusion.

In both tables we employ a baseline model 1 that includes individual
Propensities and homogeneous mixing. In models 2, 3, and 4 in both
tables we then examine forms of spatial heterogeneity: whether diffusion
is mediated by local network structures of advice giving and discussion
and by similarities in network location within the medical community as
a whole.

The multiplicative and additive formulations of diffusion suggest
somewhat different inferences about the impact of local network struc-
ture. The multiplicative model in table 3 indicates strong influences be-
tween physicians who are structurally equivalent and little influence of
advisors and discussion partners. This pattern is the one reported by
Burt (1987): structural equivalence channels contagion, while cohesion
does not.*

* The qualitative pattern of these effects is unchanged when we control for common
temporal variation via partial likelihood estimation and expand the set of exogenous
influences to include those effects discussed in prior work (i.e., when the intrinsic
propensity to adopt is treated as also a function of network centrality, contact by a
detail man, and prescription volume). It appears that differences between our findings
and the absence of local network effects reported by Marsden and Podolny (1990) are
primarily due to different assumptions about the effects of specialists on generalists,
as discussed above. This underscores the importance of how the set of spreaders is
defined.
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TABLE 3

LocaL NETWORK STRUCTURE: ML ESTIMATES OF MULTIPLICATIVE DIFFUSION MODELS
OF TETRACYCLINE ADOPTION FOR 121 PHYSICIANS (SEs in Parentheses)

MODEL

Intrinsic tendencies:

Intercept .........coviiiiiiiiiiinl. —4.07%*¥*%  —4.06%**%  —4.30%*F*F  —4.209%k*

(.45) (.45) (.43) (.46)
N 1 6** .45***
ienti tation ............... L42%Rk RS S 4
Scientific orien o O o o
- - _ .00** — .99***
i lage ...cooovvviiininnn, L96** .94%* 1
Professional ag o ol 6 o
1 1 61*** .60*** _59***
al subscriptions .............. LO3H*X .
Journ P 17 (.17) .17) (.17)
temeapt e oo o iges
P (.006) (.008) (.008) (.008)
i i .16 .07
Direct relations ............... s o
Ak %k . 3**
Structural equivalence ............ .89 8
(.32) (.34)

Likelihood ratio x* versus constant
hazard rate model ...............
Af oo 4
Likelihood ratio x? versus
equation (1) ........coeeeiiiinin.

B e, 1

* Significant at the .10 level.
** Significant at the .05 level.
*** Significant at the .01 level.

40.0%** 4], 9k** 47.2%%% 47.6%**
S S 6

1.9 7.2%%* 7.6%*

An additive formulation of diffusion suggests that both cc?hesion apd
structural equivalence channel diffusion. Doctors whose .adv1sors.oF dlS.-
cussion partners prescribe tetracycline are quicker to begin Prescrlbmg it
themselves, as are doctors with similar patterns of relatlons‘to‘other
members of the medical community.” The two .effects are significant
both separately and jointly. In fact, the impact of dlrect. relations betweex;
physicians is enhanced when we control influences mediated by structural

equivalence. . .
These results suggest that we should not be quick to discount the

% We should note, however, that analyses not permitting inﬂ}xence in ‘the same montl;
yield smaller and statistically insignificant effects of cphesnve relations. Structur;a
equivalence effects are not much affected by alternative treatments of apparently

simultaneous adoptions.
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TABLE 4

LocAL NETWORK STRUCTURE: ML ESTIMATES OF ADDITIVE DIFFUSION MODELS OF
TETRACYCLINE ADOPTION FOR 121 PHYSICIANS (SEs in Parentheses)

MobpEL
1 2 3 4
Intrinsic tendencies:
Intercept .........c.................... —A3TREE g SIRRK g 5ekkR g 5Ok
o ‘ (.68) (.71) (.71) (.72)
Scientific orientation ............... T S Y b LSO** S2xxx
. (.20) (.21) (.20) (.21)
Professional age .................... —1.05** —1.18%* —1.19%* —1.31%**
' (.40) (.46) (.44) (.49)
Journal subscriptions .............. LT3HR% LTo*** L83HKx LTGHx*
. (.24) (.26) (.26) (.27)
Contagion:
Intercept ...........ccoooiiil —6.11%¥*  — 6 71¥** g 2%k _ g 7g%k%
) ) (.36) (.75) (.35) (.73)
Direct relations ..................... 3 11%** 3.32%%
' (1.11) (.97)
Structural equivalence ............ 5.79%k* 2.79%*
o (.77) (1.16)
Likelihood ratio x? versus constant
hazard rate model ............... 37.5%%* 41,0%%* 44 8**x* 48.2%%*
G 4 S 5 6
Likelihood ratio x* versus
equation (1) ....................... 3.5%* 7.3%%% 10, 7%**
Af i 1 1 2

* Significant at the .10 level.
** Significant at the .05 level.
*** Significant at the .01 level,

impact of direct relations on diffusion. Such effects do appear less robust
than those of structural equivalence. But if we understand the additive
and multiplicative formulations as suggesting different functional forms
for diffusion, we should take the appearance of a cohesion effect within
one of the two modeling frameworks seriously. It may be that the impact
o.f .direct relations is quite independent of the effects of individual propen-
sities. If so, a multiplicative model errs in assuming that the two are
highly interdependent. An additive model may better capture the sepa-
rateness of individual effects and contagion.

Centrality

Our focus on local network influences above, like the analyses by Burt
(1987) and by Marsden and Podolny (1990), runs counter to the main
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argument advanced by Coleman et al. (1966), who stressed how patterns
of adoption among socially central and isolated physicians differed. We
next examine the effects of centrality using an additive diffusion model.
This permits an illustration of the distinctive role that variables may
have in different components of a diffusion process.

Network centrality is measured by the number of times a physician is
cited as an advisor or discussion partner. Arguments can be suggested
for three types of effects. First, a physician’s centrality may directly
affect his propensity to adopt a new drug. For example, a highly central
physician’s concern for reputation may raise (or lower) the costs of inno-
vation. Second, physicians receiving many citations may be more suscep-
tible to the adoptions of others, due to their wider circle of contacts. And
third, physicians receiving many citations may be especially influential
within their medical communities, again due to the extensiveness of their
contacts. If so, their adoptions should be highly infectious.

Model 1 in table S suggests that centrality increases susceptibility.
Physicians who are often cited as advisors and discussion partners seem
more influenced by the prescription behavior of others. There is no appar-
ent relationship between centrality and the physician’s intrinsic propen-
sity to adopt. More surprising from a relational perspective, there is also
no apparent relationship between centrality and infectiousness.

When we expand the model to include features of local network struc-
ture discussed above, the enhanced susceptibility of central physicians
remains strong (note the substantial difference in likelihood-ratio chi
square statistics between model 4 in table 4 and model 2 in table 5).
Further, while the effect is not quite significant at conventional levels,
there is some indication that centrality is associated with lowered infec-
tiousness. That is, once we control for the influences of advisors and
discussion partners, and of structurally equivalent physicians, tetracy-
cline adoptions by globally central physicians seem to exert weak influ-
ences on other members of the medical community.

It is of interest that centrally located physicians are highly susceptible
but not infectious. One possible explanation is that advisor or discussion
partner citations refer to informationally asymmetrical relationships,
where the advisor or partner receives information from the advisee with-
out returning it. But if informational asymmetry is driving the effects of
centrality, we should see stronger direct influences running from advisee
to advisor than from advisor to advisee. However, models directly testing
these “reverse” influences show even weaker effects than do the models
in tables 3 and 4, which examine the effects of cited physicians on citing
physicians.

The fact that the infectiousness of central physicians declines once local
ties are added (in model 2) suggests an alternative account. Physicians
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TABLE 5

NETWORK CENTRALITY: ML ESTIMATES OF ADDITIVE DIFFUSION MODELS OF
TETRACYCLINE ADOPTION FOR 121 PHYSICIANS (SEs in Parentheses)

MoDEL
1 2 3
Intrinsic tendencies:

Intercept .....cooiviiiiiii — 447Kk — 4 TR — 4 43%%
o . (.77) (.83 .
Scientific orientation ...................ccoeeinnnl. L60** 582“* ( ;gl

. (.23) (.25) .22
Professional age ..................occoiiiiiiiinns —1.08** — 1.40%* - 1( 361‘*
(.47) .65
Journal subscriptions ...............cocin. L75** ( 831‘* (.2532?“*
(.31) .34
Network centrality ...............cocooiviin... —.04 -—( OS) —(‘3‘2)
(.0 ) 05
Contagion: ) €09 ¢
Intercept ......oooiiiiiiiii —5.70%* —5.76%*%*  —§ 5gFk*
o (.71) (.49) .67
Susceptibility of central n's ....................... B B Vi ( 102"**
- (.03) (.03 .
Infectiousness of central s's ....................... -.20 - 40) ——( gg)
o (.42) (.27 .
Proximity of # and s based on: ) ¢
Direct relations ...............cccoiiiiinnne. 3.29%%* 2.54**
) (.80 .9
Structural equivalence ........................ 2 05?* 3( 7;?"*
o . (1.10 .
Scientific orientation .......................... ) (1 ;i?“
Likelih io x? ¢
ikelihood ratio x* versus constant hazard rate
; model ... 42.2%* 54.8%** 57.8%**
USSP 7 9 10

* Significant at the .10 level.
** Significant at the .05 level.
*** Significant at the .01 level.

inth many contacts may communicate less with each advisee or discus-
sion partner, due to limited attention. The result is lower infectiousness
per con?act but higher total influence, since the impact of each direct
contact is considerably larger than the decrement associated with increase

of one in measured centrality.?® This effect does not appear very large
however. ,

26 e e .

V‘ﬁ(’e owe this insight to Arthur Stinchcombe, who offers a better example: a male
r;)lc star may father.man.y children because many women admire him, but among
the women who admire him, only a small percentage become pregnant.
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Finally, we note that social structure may be conceived in terms of
patterned similarities in personal characteristics (Blau 1977, 1989; Carley
1986) as well as concrete (or abstract) network relations. To look for this
kind of structural effect, we ask whether contagion was structured by
similarities in the individual characteristics of physicians. In particular,
we investigated whether physicians who hold the same value on scores
for medical orientation, professional age, and journal subscriptions tend
to influence each other more.

One such effect was found, which we report in model 3 of table S.
Physicians who share a common orientation toward medicine (either a
scientific orientation or a patient-centered orientation or a mixed orienta-
tion) appear to attend more to each other than physicians whose orienta-
tions differ. Scientifically minded physicians attend to the decisions and
experiences of similarly minded physicians; patient-oriented physicians
to other patient-oriented physicians. This suggests an additional dimen-
sion to diffusion, one that stands between the effects of individual charac-
teristics on the intrinsic propensity to adopt and the channeling of conta-
gion by network relations.

CONCLUSIONS

In this article we discuss methods for the study of spatial and temporal
heterogeneity in diffusion. We propose an event-history formulation of
contagion that permits the analyst to model the impact of characteristics
of the adopter and the spreader, the spreader’s adoption event, and their
linkages. The chief advantage of this approach, we believe, is that it
opens up new avenues for the exploration and testing of social structural
hypotheses: stated broadly, of how individuals or other social entities
are affected by what others do. Notions about susceptibility to external
influence, the infectiousness of actors and types of action, and the social
proximity of sets of actors can be deployed more extensively when the
separate traditions of diffusion analysis and individual-level event-history
methods are combined.

Some of the possibilities (as well as the complexities) of this strategy
are suggested in the analysis of the Medical Innovation data. The results
above support many of the insights of Coleman et al. (1966) and Burt
(1987) into the structure of diffusion. But they also suggest that the pro-
cesses involved are more complex and varied than prior research indi-
cates. Like Burt (1987) and Marsden and Podolny (1990), we find that
network centrality does not affect the intrinsic propensity of physicians
to adopt, once other features of the process are taken into account. But
centrality is importantly connected to contagion via increased susceptibil-
ity to others’ adoptions, in many ways consistent with the discussion in
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Coleman et al. Furthermore, unlike Burt, we find that contagion in medi-
cal innovation is not a simple product of structural equivalence. Cohesive
ties based on advice giving and discussion also contribute to diffusion,
as do structures of similarity in physicians’ orientation toward their work.
These kinds of findings illustrate the importance of developing models
of diffusion whose complexity better maps onto the multiple pathways
of influence within social settings.
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